Showing posts with label CWDM. Show all posts
Showing posts with label CWDM. Show all posts

Sunday, 28 April 2019

What You Need to Know When Using 10G over CWDM

by www.fiber-mart.com
Both Passive CWDM and DWDM have been viable solutions in the telecommunications industry, but now, 10G Ethernet is appearing to be the most preferred solution over CWDM, everyone is migrating to the use of 10G Ethernet. This encourages many engineers to figure out how they ought to adjust their new designs to support the transition from 10G to CWDM. If you're one of these designers who's attempting to navigate the transition, the following is what you need to know.
 
Bandwidth Exts are Easier
In past years, designers who want to increase or improve their bandwidth could achieve this easily over a single or duplex mode fiber. During this period, the 1G Ethernet and CWDM solutions were sufficient, and the only limiting element was the power budget of the optical transceiver or the attenuation of your fiber. That it was possible to transmit up to 200 kilometers and utilize just a 1G Ethernet when designers preferred cheap CWDM.
 
Now, many people are considering the 10G Ethernet solutions, and that's why it's necessary to understand how everything will differ when using 10G over CWDM. When intending to migrate to 10G, you need to know the fiber type. For the dispersion and attenuation calculation, every designer need to know the recommended parameters from ITU-T and understanding the vendor and product kind of the fiber could also help. Remember that the physical fiber will work better than the standards claim most of the time.
 
Chromatic dispersion is referred to as the time variance of a single pulse of a signal. To summarize, chromatic dispersion is "the spreading of a light pulse per unit source spectrum width in an optical fibre due to the various group velocities of the different wavelengths composing the source spectrum" or in layman's terms, "the signal is stretched on the fiber transmission path due the dispersion characteristics of the transporting fiber."
 
Chromatic dispersion always exists, but the higher the link speed is, the greater important it becomes. For instance, a wavelength of 1310nm have a 0 ps/nm chromatic dispersion and 5, 25 dB fiber attenuation. In comparison, a wavelength of 1610 nm have a 330 ps/nm chromatic dispersion and a 3,45 dB fiber attenuation.
 
CWDM Over DWDM 10G is Cost-Effective
Designers should bear it in mind that CWDM implementation is more cost effective than passive DWDM infrastructure. These solutions will be more expensive because DWDM lasers cost more. DWDM lasers are essentially DFB lasers which are cooled, however, they are recommended as they contain the longevity that are required in these solutions. If you would like transmit a signal over a large distance, you should think about large metro ring topologies.
 
Though 10GBASE DWDM is more expensive, it's become the first choice because users have started to consider the costs after dividing it over the quantity of customers served. Some customers are more cost-conscious and have lower bandwidth capacity requirements; so, the cheap CWDM infrastructure will make more sense.
 
Remember that the new 10GBASE DWDM services is usually added over the same fiber. This will enhance the support of the initial CWDM infrastructure capacity by 4 times. This is irresistible to many designers.

Wednesday, 23 January 2019

The Chanllenges of Technology And Cost 100G Faced

by www.fiber-mart.com
More and more high bandwidth services such as high definition(HD) video, online games and video conference challenging the traditional network, 100G as a ease network bandwidth technology, becomes the new hope of the operator.
 
100G industry chain has matured, with all components and subsystems have commercial capacity of multiple manufacturers, the market also needs the support of 100G system, the backbone network will be fully transferred to the 100G-leading era. From the early 2013, the focus point of 100G is from the laboratory into 100G network deployment and the commercial 100G has started.
 
Four Technical Challenges Of 100G
 
Although the 100G has been carried out, but the 100G transmission technology meets four technical challenges.
 
First, high power consumption. The achievement mechanism of 100G technology is complex, the optical receiver requires the use of coherent reception and processing of the DSP, the key chip has no ASIC, resulting in high power consumption of the whole 100G system. When large-scale commercial 100G technology, the average power consumption of each wavelength is still a problem waiting to be solved. Currently the power consumption of per wavelength is above 200W, the average power consumption of per frame is 7000W, so there will need three frames. Obviously, the 28nm process can help to reduce energy consumption, but there is no 100G solution of 28-nanometer. In addition, although the light energy consumption is not large, but due to the use of next-generation optical transceiver will increase greatly, reducing the power consumption is very necessary.
 
The second is integrated, especially in the field of optical circuit and photoelectric integration. How to add mass active and passive optical devices such as laser, optical amplifier, wavelength division multiplexing(WDM) and transmitter/receiver to the network to achieve highly integrated? Using semiconductor technology to the integration of CWDM and laser?
 
The third is test. The challenges of 100G testing include the quality evaluation of the deployed 100G system signal and the system maintenance after deployed. 100G using polarization multiplexing, and the signal spectrum is wide, the common OSDR and test instruments can not real-time test it, only by shutting off the laser method. How to achieve real-time test is industry’s future research topic, many of today’s online testing system are worth studying.
 
The Fourth is few prospective studies. How to make the current transmission system gradually shift to user-oriented management from the traditional network management? Quickly and efficiently allocate the physical resources?
 
The key is the problem of cost
 
The key reason why 100G failed to be applied large-scale currently is the opportunity cost is relatively too high. In the era of 100G, the cost of optical module is very high. The mainstream CFP module, the actual sales price is more than $10,000. From the point of optical module cost, 100G module is several times higher than 10G optical module. It also requires manufacturers continue to make efforts in chip integration, integrated optical module miniaturization and system design, to achieve the overall cost of products are reduced.
 
Especially the regard of optical module technology, the cost of this part is the key of the whole 100G system cost, the optical module itself has to face the challenges of control power consumption and improve board integration.

How to Understand PoE and PoE+ Switches

by www.fiber-mart.com Power-over-Ethernet (PoE) is the technology that allows network switches to transmit power and data through an Ethe...