Showing posts with label SUNMA OP-5000 Fiber Polishing Machine. Show all posts
Showing posts with label SUNMA OP-5000 Fiber Polishing Machine. Show all posts

Tuesday, 20 March 2018

CLEANING: KEEP YOUR FIBER OPTIC NETWORK AT PEAK PERFORMANCE

by Fiber-MART.COM
Clean fiber optic components are vital for a quality connection between your pieces of network equipment. As network providers are building up to deploy 40G and 100G systems, techs must pay close attention to their fiber optic performance, ensuring data is transmitting quickly and without failure.
 
This is the third in a Telect blog series, entitled The A-B-Cs of Cable Management. Fiber Product Manager Aaron Monheim tackles the subject of fiber optic cleaning.
 
Contaminated fiber connectors often lead to network failures and limited insertion loss. If a connector is dirty, even a contaminant that is only 1µ can degrade the signal by 1%, resulting in 0.05dB of insertion loss.
 
A larger 9µ speck of dust can block the signal completely, even though it is not possible to see with the naked eye.
 
Dust is not the only culprit for attenuation loss on the endface of a fiber connector. Oils from our hands, airborne contaminants and residue left by water or other solvents are all common contaminants on connectors.
 
They’re more difficult to remove from the endface, but they also can cause damage to networking equipment.
 
It’s all easily prevented, though, with a little house cleaning:
 
HOW TO CLEAN FIBER OPTIC CONNECTIONS
 
The goal is always to eliminate the dust or contaminants and get that fiber-optic connection clean for optimal data transmission.
 
Here’s a quick step-by-step guide:
 
Using a scope to inspect each fiber connector
If the connector is dirty, do a one-click clean and re-inspect with the scope
If the connector is still not passing, remove the connector from the module and attempt a second dry clean with a cletop cleaner
If the connector still does not pass, do a wet clean with 99.9% isopropyl alcohol and a lint-free KIM wipe
These steps should get your fiber optic connections clean. If the endface is still failing after two dry cleans and one wet clean, the connector may need to be re-polished.
 
Remember that re-inspection is an important step before you try to plug the fiber into the connector.
 
After all, your end users’ download speeds are at stake!
 

Is Your Fiber End Face Up to Scratch?

by Fiber-MART.COM
While it seems we can never hammer home enough the need to properly clean and inspect fiber end-faces since contamination remains the number one cause of fiber link failures, have you ever thought about what exactly you are cleaning and inspecting?
 
Defects on a fiber end-face come in all types, shapes and sizes.They include scratches, cracks, and pits and contaminants like dirt, dust, oil and even salt.If you properly clean a fiber end-face with lint-free wipes and a specialized solvent designed specifically for fiber cleaning, it’s possible to remove contaminants from the fiber end-face.But what about permanent surface defects like scratches, cracks and pits that can’t be removed via cleaning?
 
Fiber End Faces inspection with Fluke Networks’ FI-7000 FiberInspector Pro
 
Pits typically appear as irregular shaped areas where glass has been removed due to either improper handling, poor manufacturing processes or hard debris on the fiber end-face present during mating.Cracks appear as jagged lines on the fiber end-face, and while they may resemble a scratch, they are much deeper.Pits and cracks usually mean the connector needs to be repolished or replaced.But scratches are little different.Defined as a having greater length than width, a scratch on a fiber end-face doesn’t necessarily mean it won’t pass inspection.But it doesn’t necessarily mean it will either.That’s because when it comes to scratches, it’s all about the size and location.
 
Size, Number and Region Matter
 
The IEC 61300-3-35 Basic Test and Measurement Procedures Standard for Fiber Optic Interconnecting Devices
 
The IEC 61300-3-35 Basic Test and Measurement Procedures Standard for Fiber Optic Interconnecting Devices and Passive Components contains specific cleanliness grading criteria to assess pass or fail certification for inspection of a fiber end-face.The IEC 61300-3-35 certification criteria is based on the number and size of scratches and other defects found in each measurement region of the fiber end-face, including the core, cladding, adhesive layer and contact zones.Of course, the core of the fiber where the signal travels has the most stringent requirements.
 
And considering the difference in core size between singlemode and a multimode fiber, it makes sense that the criteria varies based on connector type and fiber size.So a scratch or defect that passes on a multimode fiber, might not pass muster on a singlemode.For example, as shown in the tables, a multimode fiber can have a 2 μm scratch in the core and still pass inspection, while a singlemode fiber would not.
 
The sizes we are talking about for scratches and defects cannot be seen with the human eye – consider that a human hair has an average cross-section of around 50 μm and the human eye cannot see anything smaller than 40 μm.That’s why you need a microscope to inspect fiber end-faces.
 
But to really inspect an end-face per the IEC 61300-3-35 criteria, you would also need to measure and count the scratches and defects – another task that is virtually impossible with the human eye.
 
Thankfully Fluke Networks’ FI-7000 FiberInspector Pro does the work for you.Through its algorithmic processes that automatically and quickly inspect, grade and certify fiber end-faces based on the IEC 61300-3-35 criteria, FiberInspector Pro knows exactly how many, how big and where scratches and defects are located on the fiber end-face.So you can rest assured that your connectors are up to scratch, helping ensure optimum fiber network performance for your customers.

Monday, 19 March 2018

MPO Cable Testing Overview

by Fiber-MART.COM
 
Nowadays, the existing bandwidth is not adequate to meet enterprises’ increasing appetite. In the meanwhile, optical technologies like cloud computing, virtualization and storage area networks are all in the fast development, which pushes the further development of higher-bandwidth tech like 40/100G Ethernet. Thus under this circumstance, new devices are greatly required. Besides the new optical transceivers and fiber optic cables, a steady proliferation of fiber connections—MPO (Multifiber Push-On) came into being.
 
MPO cables, featured by its compact, pre-terminated advantages, has become the default cabling solution for the increasing bandwidth requirements. However, a flaw of the MPO cable may hinder its development. The testing process of the MPO cable can be complex and error-prone. Have you been through the scene? When you prepare to test a MPO cable, you have to throw polarity of all 12 fiber connections into the mix. And if it comes to migrating 10 Gbps to 40/100 Gbps on the same cable, all the testing job you have done is in vain. Since the testing process is pretty uneasy, The following text will provide some detailed information about it to help you do the right MPO cable testing.
 
Problems You Should Know About MPO Cable Testing
 
Typically, a MPO cable contains 12 optical fibers, and each fiber is thinner than human’s hair. So if you want to test the cable, you must test every fiber of it, which is quite difficult for inexperienced engineers. The common way to do this is to use a fan-out cord to make the 12 fibers separate, then testing. One fiber testing would take you 10 seconds. So if your customer ask you to test 48 MPO trunks cable in data center which has a 30,000-MPO data center installation, that means you need to spend 3,120 hours. Such a huge project! To avoid this expensive and time-consuming process, modular factory-terminated MPO cables promise simplicity, lower cost, and true plug-and-play fiber connectivity.
 
Additional, when you are about to test a MPO cable, you should check whether the MPO cable is in the good state. Because cables must be transported, stored, and later bent and pulled during installation in the data center, which may lead to the performance uncertainties before fiber cables are deployed. Proper testing of pre-terminated cables after installation is the only way to guarantee performance in a live application.
 
What’s more, fiber polarity is also an important factor you should take into account. The simple purpose of any polarity scheme is to provide a continuous connection from the link’s transmitter to the link’s receiver. For array connectors, TIA-568-C.0 defines three methods to accomplish this: Methods A, B and C. Deployment mistakes are common because these methods require a combination of patch cords with different polarity types.
 
The Relationship Between Bandwidth and Testing
 
The market trend of telecom industry implies that 10G network has already been deployed in a large scale. And now 40G is main stream. As for 100G, people also already prepare for it. So bandwidth would always be a hot topic.
 
We have said before that MPO cable can solve the problem of bandwidth. As data center bandwidth steadily climbs to 10, 40, and 100Gbps, a dense multi-fiber cable becomes the only option. That’s why the use of MPO cables has steadily risen over the past 10 years. With the MPO cabling system, 40/100G migration path seems to be a simple and easy solution. Just remove the 10Gbps cassette from the MPO cable and replace it with a bulkhead accommodating a 40Gbps connection. Later it might be possible to remove that bulkhead and do a direct MPO connection for 100 Gbps at a later date. Figure 2 shows a 40G connectivity with the use of the 12-fiber MPO cable. A 40G QSFP like QSFP-40G-SR4 connects to a 12-fiber MPO cable. A 12-fiber MPO fanout cable is also used to connect four 10G SFP+ transceivers like 46C3447 with a MPO FAP.
 
The problem is that while this migration strategy is an efficient way to leverage the existing cabling, in comparison to 10Gbps connections, the 40Gbps and 100Gbps standards call for different optical technology (parallel optics) and tighter loss parameters. In short, each time you migrate you need to verify the links to ensure the performance delivery the organization requires.
 
How to Do the Proper MPO Cable Testing
 
When you move to this part, you may think that MPO testing may be a tough obstacle for us to conquer. So is there a simple way to do the testing? The answer is yes. You can just test all 12 fibers—the whole cable—simultaneously and comprehensively (including loss and polarity). That sort of test capability changes the fiber landscape, enabling installers and technicians to efficiently validate and troubleshoot fiber—flying through the process by tackling an entire 12-fiber cable trunk with the push of a button.
 
To do a proper MPO cable testing, you must need some proper testing tools as shown in Figure 3. The tools to perform this type of test are emerging on the market, and promise to reduce the time and labor costs up to 95% over individual fiber tests. Characteristics to look for in such a tool include the following parts.
 
An onboard MPO connector to eliminate the complexity and manual calculations associated with a fan-out cord.
A single “Scan All” test function that delivers visual verification via an intuitive interface for all 12 MPO fibers in a connector.
Built-in polarity verification for end-to-end connectivity of MPO trunk cables.
“Select Individual Fiber” function that enables the user to troubleshoot a single fiber with more precision.
 
Summary
 
The insatiable need for bandwidth ensures that the integrity of the data center, which has also become inextricably linked to the strength of the fiber cabling infrastructure. Now more and more MPO trunk cables are put into use, to make sure the better performance, you should be able to test the MPO connection. Fiberstore offers a variety of MPO products including MPO trunk cables, MPO harness cable, 12-fiber or 24-fiber MPO cable and so on. All of our products can also be customized. Please feel free to contact us.

Tuesday, 27 February 2018

How to Installing or Removing Transceiver Modules (Part I)

by Fiber-MART.COM
After learning more about a variety basic or conclusive knowledge of transceiver modules these days, I believe you must have a new understanding or a deeper perception on the transceiver modules. In fact, that's just a tip of iceberg. My blog will continue to bring more information about the fiber optic transceiver modules, such as SFP transceiver, SFP+ transceiver, XFP and so on. Also the other knowledge of fiber optic communication, network, telecom etc. to all of my friends who like this field and like my blog. Since we discuss so much about the theories of the transceiver modules, today, I prefer to talk about something practicle, for instance, some knowledge about installing or removing different kinds of transceiver modules.
 
As we know, the commonly used transceivers include the following 8 types:SFP Cisco
 
 
GBIC (Gigabit interface converter)
 
SFP (small form-factor plable)
 
SFP+
 
XENPAK
 
X2
 
XFP
 
QSFP/QSFP+ (Quad Small Form-factor Plable Plus (QSFP+) )
 
CFP (C Form-Factor Plable)
 
 
The following content will cover the knowledge of installing or removing for these types of transceiver modules, namely today's main topic. But first of all, I want to talk about some preparations and considerations before starting the main topic.
 
What equipment should we need to install a transceiver module?
 
When installing a transceiver module, some tools you should need in order to make your installation go well. The following is a list of such tools which are recommended:
 
 
 
A Wrist strap or similar personal grounding device designed to stop ESD occurrences.
 
An Antistatic mat or similar which the transceiver can be placed on.
 
Fibre-optic end-face cleaning tools and inspection equipment.
 
A flat head screw driver is require to install a XENPAK transceiver module.
 
 
What should we need to know before or during installing or removing a transceiver module?
 
In order to ensure the safety and avoid leading the unnecessary losses, there are some items which we should consider before and during installing and removing the transceiver modules.
 
 
To preventing the cables, connectors, and the optical interfaces from damage. We must disconnect all cables before removing or installing a transceiver module.
 
Please be aware that the regular removal and installation a transceiver module can shorten its useful life. Thus, transceivers should not be removed or inserted more often than is required.
 
Transceiver modules are sensitive to static, so always ensure that you use an ESD wrist strap or comparable grounding device during both installation and removal.
 
Do not remove the dust plug from the transceiver slot if you are not installing the transceiver at this time. Similarly, we must use the dust plug to protect the optical bore if we don’t use the transceivers.
 
 
How to Install or Remove Transceiver Modules
 
1. How to Install or Remove GBIC Transceiver Module
 
GBIC Installing Steps
 
 
step 1: Firstly you should attach your ESD preventive wrist strap to your wrist to prevent ESD occurrences.
 
step 2: Remove the GBIC transceiver from its protective packaging.
 
step 3: Verify that the GBIC transceiver module is the correct model for the intended network.
 
step 4: Using your thumb and forefinger, grip the sides of the GBIC transceiver and carefully align it with the GBIC socket opening on the device.
 
step 5: You can now carefully insert the GBIC transceiver module through the socket flap and slide it into the GBIC socket. A click will be heard once the GBIC is locked into the socket. Please ensure that the GBIC is inserted carefully straight into the socket.
 
(Please note: you should keep the protective dust plugs in place until making a connection. You should also inspect and clean the SC connector end faces immediately prior to making a connection.)
 
 
step 6: The dust plugs from the network interface cable SC connectors can now be removed, ensuring that these are saved for later use.
 
step 7: Next, inspect and clean the SC connector’s fiber optic end faces.
 
step 8: Remove the dust plugs from the optical bores on the GBIC transceiver module.
 
step 9: You can now attach the network interface cable SC connector to the GBIC.
 
GBIC Removing Steps
 
Please be aware that GBIC transceiver modules are static sensitive so you should always use an ESD wrist strap or similar grounding device when coming into contact with the device. Transceiver modules can also reach high temperatures so may be too hot to be removed with bare hands.
 
step 1: Disconnect the cable from the GBIC connector.
 
step 2: Release the GBIC from the slot by pressing the two plastic tabs located on either side of the GBIC (They must be pressed at the same time).
 
step 3: Once released carefully slide the GBIC straight out of its module slot.
 
step 4: The GBIC transceiver module should now be placed safely into an antistatic bag.
 

Saturday, 24 February 2018

Design and Research of Intelligent SFP optical module

by Fiber-MART.COM
Introduction
 
In the optical communication products, optical module occupies has a very important position. Optical transceiver module as one of the key technologies of optical fiber communication network, is widely used in synchronous optical network SONET) and Synchronous Digital Hierarchy SDH), Asynchronous Transfer Mode (ATM), Fiber Distributed Data Interface (FDDI), as well as Fast Ethernet and thousands Gigabit Ethernet and other systems.
 
In the present optical communication products, fiber optic transceiver module has been more popular than others, SFP GBIC module module volume ratio reduced by half, but also supports hot-swap capabilities, has been widely used. Meanwhile, in the various existing networks needed optical transceiver module types, more and more requirements are also increasing. To meet the ever increasing performance requirements of the system,Optical module continues to develop intelligent, fast and high-density interconnect direction.
 
Intelligent SFP optical modules, namely USES the fiber optic sfp module of digital diagnosis function, will become a new generation of optical transceiver module integrated in the window.It can realize network management unit real-time monitoring the temperature of the transceiver module, power supply voltage, bias current, as well as the transmitting and receiving optical power.Through monitoring of these parameters, we can help system administrators predict the life of the light module, fault isolation system and authentication module in the installation of compatibility, etc.
 
A smart SFP optical module system design
 
1.1
 
Transmitting section
 
The main role of the light-emitting process in the optical transmission module is to convert the optical signal into an electrical pulse signal is a pulse, the electrical signal is input, the output optical signal. Transmitter module, mainly by the laser driving circuit and the TOSA. Which TOSA backlit by the laser diode LD and PD components. LD is used in vertical cavity surface emitting laser VCSEL.
 
First electrical modulation of the laser drive lasers to meet the input digital fiber optic communications system required drive signal, the drive signal from the bias current Ibias And the modulation current Imod composition, the laser emits an optical signal corresponding to the driving of the driving signal, the optical signal is coupled into the optical fiber and transmitted to the receiving end. In this scenario, the laser driver selection MAX3286.
 
Laser driver with the functions of automatic power control (APC), APC circuit using the backlight diode in the TOSA, monitoring laser the size of the backlight.When the optical power is less than one rating, through increase the drive current feedback circuit, laser output power increases as the rated power value.Conversely, if the optical power is greater than a certain rating, is through feedback circuit reduce drive current, laser power output is less.APC circuit can dynamically adjust the laser power, therefore, the size of the bias current, can automatically compensate laser due to the change of ambient temperature or aging caused by the change of the output optical power, keep the output optical power range is relatively stable.
 

 
Receiving part
 
The main role of the receiver module is attenuated after
 
deformation weak optical fiber cable transmission signal to a pulse electric pulse signal by photoelectric conversion, and give sufficient amplification, a standard reduction of the digital pulse signal. Optical receiver module schematic shown mainly by the photodiode PD, a preamplifier, a limiting amplifier and other components. Which photodiode and preamp integrated package together constitute ROSA.
 
A photodiode is a core device of a digital optical receiver, an optical pulse signal will be the electrical pulse signal by photoelectric conversion, commonly used are PIN photodiodes and avalanche photodiode APD. Optical signal from the optical interface enters the photodiode PD, is converted into a weak current, the current through the pre-amplifier and converted into a voltage level is amplified to an appropriate level.
 
Effect limiting amplifier output of the preamplifier is the magnitude of different amplitude analog signal into a digital signal, these signals can be amplified. To photoelectric detectors with a good match and get the low-noise and wide-band preamplifier gain is not too high, the preamplifier output voltage amplitude is usually from a few millivolts to tens of millivolts, such small signals can not be directly output optical module is therefore necessary to further enlarge the signal; the other hand, the photodetector detects the light signal from the amplitude of the current signal in a defined tolerance level, the tolerance limits of the capacity of the fiber considered Poor, splice loss and the parameter fluctuations caused by temperature and aging, however, the data for further processing, the signal amplitude is preferably a constant value.
 
Therefore, limiting amplifier requires a certain dynamic range, which usually requires a dynamic range of more than 20dB.
 
1.3
 
Digital Diagnostics DDM part
 
Digital diagnostics mainly composed of MCU to complete. By temperature MCU, the network management unit may receive real-time monitoring module, the power supply voltage, laser bias current and the light emitting and receiving power. By measuring these parameters, the management unit can quickly identify the specific location of fiber link failure occurs, simplify maintenance, improve system reliability.
 
Five DDM parameter acquisition circuit for acquisition by the first conversion, the inputs to the ADC, ADC five circuit analog voltage into a digital signal sent by the decoder circuit is stored in a memory support DDM corresponding address bit . Transmission of information via a two-wire serial interface (SCL clock line and data line SDA) to achieve.

Friday, 23 February 2018

Do You Still Worry About The Cost of Fiber Optic Transceivers?

by Fiber-MART.COM
To many users, there is an inevitable issue that the cost of fiber optic transceivers will keep adding up over time. This is why the demands of 3rd party compatible fiber optic transceivers have emerged in the market. Actually, 3rd party compatible fiber optic transceivers are the direct solution for a tight budgets. However, some issues mayoccur when using 3rd party compatible fiber optic transceiver that drive users to give it up. The worry of the cost of fiber optic transceivers still exists. This paper is going to talk about the fiber transceiver industry and discuss something you should know about the 3rd party compatible fiber optic transceivers.
 
Fiber Optic Transceiver Industry
When you buy transceivers for your switch, you are told to buy them from your network equipment manufacturer in order to keep your system running properly and safely. However, the switch vendor doesn’t actually manufacture these transceivers. In fact, the fiber interface transceiver manufacturers will supply a variant of their standard transceiver to the switch vendor for resale. The switch vendor will perform testing of that transceiver against their switch, create a compatibility matrix and SKU for that transceiver and start selling the transceiver. They mark up the fiber optic transceiver price to cover their costs (to test/procure/stock etc..) and make a profit. This is why the “brand” transceiver modules are more expensive.
 
However, as long as the transceiver complies with the required IEEE and MSA standards all it would take is a quick compatibility test and for the vendor could publish a list of all supported transceivers. Thus, 3rd party compatible transceivers are not hard to be realized. In order to corner the market, the switch vendor will request that the transceiver vendor flash the transceivers EEPROM with a vendor specific identifier. The switch operating system will use the I2C bus to query the transceiver EEPROM data, and verify that the transceiver has the correct identifier. If the identifier doesn’t match, then the OS will not power up the laser. The idea is that the switch vendor doesn’t want you to put anything into your router which hasn’t been approved by them. This is why many users will face error warning when using the 3rd transceivers.
 
How To Solve? – “My 3rd party transceiver does not work on my switch”
So, how to solve this issue and successfully use 3rd party transceivers on your switch? First, you should know the hidden commands of your switch. I believe some of my blog fans may know it as I have explain it some weeks ago in another papers. Yes, the “service unsupported-transceiver” command. Certainly, it is take Cisco for example, but it is easy to find the equivalent commands in other brand switches along the way. (For more details can visit this paper link.)
 
3rd Party Transceivers vs “Brand” Transceivers
User who have experience of buying 3rd party transceivers and “brand” transceivers may know that the the major difference is cost. So, how much difference? Assuming you get an identical transceiver from Cisco and Fiberstore, the Cisco SFP+ list price for an SR SFP+ transceiver is $1,495 USD, while Fiberstore’s one just listed at $ 16.00 USD. This difference is incredible, but it is the truth. The truth is that you won’t have to sacrifice any quality or reliability with all of the savings you receive. In contrast, you get everything you’ve come to expect from the 3rd party transceivers at up to 90% off list price. As high-density merchant-silicon based switches become mainstream, the per-port cost of the switch is dropping dramatically. The transceiver costs now become a very large part of the total system cost and, for a 48-port switch the transceiver costs could easily exceed the base cost of the switch. 3rd party transceivers help users to save more on their cost of transceivers, so why not do it?
 
Of course, 3rd party transceivers are good option for your transceivers solutions. However, at least so far, the market is not fully normalized. Though the optical transceiver module prices of 3rd party transceivers are very attractive, but the good and bad are intermingled. If you plan to buy the 3rd party transceivers for your switch, you had better to choose a vendor with high reputation. I recommend Fiberstore for you. Why? You may know the answer after you try.

Friday, 2 February 2018

Introduction of Fiber Optic Splice Closure

by Fiber-MART.COM
Fiber optic splice closure is the equipment used to offer room for fusion splicing optical fibers. It also provides protection for fused fiber joint point and fiber cables. There are mainly two types of closures: vertical type and horizontal type. A large variety of fiber splice closures are designed for different applications, such as aerial, duct fiber cables and direct burial. Generally speaking, they are usually used in outdoor environment, even underwater.
 
1. Horizontal type splice closures look like flat or cylindrical case. They provide space and protection for optical cable splicing and joint. They can be mounted aerial, buried, or for underground applications. Horizontal types are used more often than vertical type (dome type) closures. Most horizontal fiber closure can accommodate hundreds of fiber connections. They are designed to be waterproof and dust proof. They can be used in temperature ranging from -40A degree to 85A degree and can accommodate up to 106 kpa pressure. the cases are usually made of high tensile construction plastic.
 
2. Vertical type of fiber optic splice closures looks like a dome, thus they are also called dome types. They meet the same specification as the horizontal types. They are designed for buried applications.
 
Applications splice closures provide room for splicing Outdoor Fiber Optic Cable together. fiber splice trays are needed too. they provide the perfect protection for outside plant fiber cable joints. fiber splice closures accept both ribbon and round fiber cables. Each type (ribbon or round cable) fits respective requirement of different fiber splicing counts. They are widely used in optic telecommunication systems.
 
Fiber Optic Splice closure Installation Steps
 
1.Fiber optic splice closure kit usually includes: end plate, splice tray organizer, fiber splice tray, cover, cable grommets, grommet retainer, mounting bracket and misc. hardware.
 
2. Fiber Cable Sheath Preparation
 
1)Expose the rip cord. This step involves marking the location with a tape marker, ring-cutting the outer jacket shaving off the outer jacket to expose the rip cord.
 
2)Remove the outer sheath. This step involves making a longitudinal slit down the outer sheath,peeling off the outer jacket and corrugated metal, and cutting the rip cord flush with the end of the corrugated metal.
 
3)Rewove the inner jacket. This step involves using the rip cord under the inner jacket to slit it, cutting aramid yarns, cutting central strength member, and cleaning the filling compound.
 
3. Bonding and Grounding Hardware Installation This step involves sliding the cable clamp over sheath, sliding the bond shoe under the corrugated metal, placing the bond plate over the bond shoe ans securing the sheath grip.
 
4. Assembly of Cables to Closure The preferable location for the two main cables is in the lower end plate port. If a third or fourth cable is required, it is easier to install it in the upper end plate port as a branch cable. This fiber optic splice closure is designed for two cables in each of its two ports. If only one cable will be installed in a port, the provided rubber grommet plug is used to substitute for the second cable.
 
1) Install Cables to End Plate. this step involves unscrewing knob and removing grommet retainer, positioning the end plate assembly, attaching the sheath grip to dielectric cables, sliding cables and sheath grip through, and securing sheath grip to backbone.
 
2) Grommet Installation and External Grounding. This step involves applying Bsealant, pushing the grommets into the end plate port, and applying more B-Sealant.
 
3) Fiber unit Preparation and Distribution Organizer Installation. This step involves removing more loose tubes,separating each cable’s loose tube into two groups, positioning the distribution organizer, securing the loose tubes.
 
4) Splice Tray Installation. This step involves placing the splice tray, fastening the end of the splice tray to the organizer, and installing cables, grommets and external ground.
 
5) Optical Fiber Splicing. This step involves splicing holder placing, fiber splicing and fastening the splice holder lid.
 
5.Fiber Optic Splice Closure Cover Installation.
 
6.Closure mounting
 
7.Reentry

Wednesday, 31 January 2018

4 Steps in Fiber Optic Fusion splicer

by Fiber-MART.COM
Fiber Optic Fusion splicer may be the act of joining two optical fibers end-to-end using heat. The thing is to fuse both the fibers together in such a way that light passing with the fibers is not scattered or reflected back from the splice, and thus the splice as well as the region surrounding it are almost as strong because virgin fiber itself. The basic fusion splicer apparatus includes two fixtures which the fibers are mounted and two electrodes. Inspection microscope assists in the placement in the prepared fiber ends into a fusion-splicing apparatus. The fibers they fit in to the apparatus, aligned, and then fused together. Initially, fusion splicing used nichrome wire as the heating unit to melt or fuse fibers together. New fusion-splicing techniques have replaced the nichrome wire with fractional co2 (CO2) lasers, electric arcs, or gas flames to heat the fiber ends, causing them to fuse together. The little size of the fusion splice along with the development of automated fusion-splicing machines make electric arc fusion (arc fusion) the most popular splicing approaches to commercial applications.
 
Splicing fiber optic cable ends together is often a precise process with hardly any room for error. This is because the optical fiber ends must be gathered absolutely perfectly to be able to minimize potential optical loss or light leakage. Properly splicing the cable ends demands the usage of a high-tech tool called a fusion splicer. A fusion splicer perfectly mates the optical fiber ends by melting or fusing them to the other. Splicing fiber cables surpasses using connectors considering that the fusing process results in a superior connection that features a lower level of optical loss. Now,I will introducts 4 steps to fusion splicing.
 
Step1
Know that fusion splicing is essentially several optical fibers being permanently joined together by welding utilizing an an electric arc. The need for an exact cleaver is suggested should you desire less light loss and reflection problems. Understand that an excellent cleaver just for this precise work is nessary. If your poor spice is created, the fiber ends may well not melt together properly and problems can arise.
 
Step2
Prepare the fiber by stripping the coatings, jackets and tubes, ensuring only bare fiber is left showing. You will need to clean all of the fibers associated with a filling gel. A clean environment is imperative for a good connection.
 
Step3
Cutter the fiber. A great wire cutter is suggested to secure a successful splice. When fusing the fibers together, either align the fibers manually or automatic, determined by what type of fusion splicer you’ve got. When you’ve got a new proper alignment, a power arc can be used to melt the fibers together creating a permanent weld of these two fiber ends.
 
Step4
Protect the fiber with heat shrink sleeve, silicone get. This can maintain your optical fiber resistant to any outside elements it may encounter or future breakage.
 
Alternatives to fusion splicing include using fiber optic connectors or mechanical splices because both versions have higher insertion losses, lower reliability far better return losses than fusion splicing. Want to know more about fiber splicer knowledges, pls visit FiberStore.com to find your answer.

Saturday, 20 January 2018

What Cabling Infrastructure Can Support 40G Data Center?

by Fiber-MART.COM
Fiber connectivity in higher-speed active equipment tends to develop as more condensed and simplified with plug-and-play, hot-swap transceiver miniaturization. 1G and 10G networks commonly use SFP or SFP+(Small-form-factor pluggable plus). Interfaces of 40G is QSFP (Quad Small Form-factor Pluggable). The interface changes need different connectors to achieve network connectivity. So what cabling infrastructure requirements are needed to support 40G applications?
 
MPO/MTP Fiber Patch Cable
The IEEE 802.3ba standard specifies multi-fiber push-on (MPO) connectors for standard-length multimode fiber connectivity. MPO/MTP is the designated interface for multimode 40G. Its small, high-density form factor is ideal with higher-speed Ethernet equipment.
 
A 12-fiber MPO connector interface can accommodate 40G. Usually 40G data center uses 12-fiber MPO/MTP connectors. The typical implementations of MPO plug-and-play systems split a 12-fiber trunk into six channels that run up to 10 Gigabit Ethernet (depending on the length of the cable). 40G system uses 12-fiber trunk to create a Tx/Rx link, dedicating 4 fibers for 10G each of upstream transmit, and 4 fibers for 10G each of downstream receive. The upgrade path for this type of system entails simply replacing the cassette with an MPO-to-MPO adapter module.
 
Direct Attach Cable
Except MPO/MTP trunk or patch cord assemblies interconnecting QSFP+ transceivers, many data centers also likely to use 40G DACs (direct attach cable). DAC is a form of high speed cable with “transceivers” on either end used to connect switches to routers or servers. It a kind of optical transceiver assembly. DAC cables are not real optics and their components are without optical lasers. DACs are much cheaper than the regular optics. Just because the low cost and high performance, DACs are preferable for 40G data center applications and high-performance computing environments. Cost of connectivity is significantly reduced by avoiding the more costly fiber transceivers and optical cables. 40G DACs can provide inexpensive and reliable 40G speed connections using either active optical cables or copper cables.
 
Active Optical Cable
An active optical cable (AOC) consists of a bend-insensitive multimode or single-mode fiber cable terminated with a connector and embedded with transceivers that convert electrical signal to optical signal and back. AOC can reach a longer distance copper cables. AOCs use the same interfaces as copper cables and are typically used in data centers.
 
In data centers, people worry that power consumption and heat generation will increase with the high data rates. Last few years, cable assembly manufacturers have responded by releasing increasingly efficient AOC interconnects. For example, 3M makes a QSFP+ AOC assembly that uses approximately 475mW per end. In addition to lowering power consumption directly, low-power AOCs release less heat than higher-powered products, further driving down power consumption by reducing the need for cooling.
 
What’s more, AOC is reliable. Nowadays, consumers are less tolerant of errors and failure, so the reliability of all equipment becomes more critical. The tiny electronics embedded in the transceiver, which enable the electrical-optical-electrical conversion, carry a potential for failure. So cable installers are wise to choose AOC with test results confirming its reliability.
 
The problem is that copper cable is stiff and bulky, thus consuming precious rack space and blocking critical airflow. But with the advancing technology, manufactures produce a thinner, uniquely shielded ribbon-style twinaxial cable that can support speeds of 10G per channel while addressing many of the concerns associated with round, bundled cable. And the ribbon-style twinaxial cable is significantly slimmer than its round counterparts. Even better, the cable can be folded multiple times and still maintain signal integrity, allowing for higher density racks and space savings.
 
Conclusion
As the need of high data transport rates, the data center network migrates from 10G to 40 Gigabit Ethernet which provides a framework for data rates of 40 Gigabit per second. To support 40 Gpbs connectivity, there is a need to upgrade the cabling infrastructure. All our MPO/MTP fiber cables and 40G QSFP+ cables are low-cost and high-performing. Fiberstore can provide you a suitable way to achieve your 40G data rates in the most cost-effective manner.

How Much Do You Know 40 Gigabit QSFP+ Transceiver

by Fiber-MART.COM
QSFP+ (Quad Small Form-factor Pluggable Plus) transceiver interfaces a network device motherboard (for a switch, router, media converter or similar device) to a fiber optic cable, which is widely used for data communications applications. It is a industry format jointly developed and supported by many network component vendors. QSFP+ is also the IEEE standard connector for the emerging 40GbE standard. QSFP+ modules increase the port-density by nearly 3 times when compared to SFP+ module.
 
Overview on 40G QSFP+ Transceiver
40G QSFP+ transceivers are designed to support Serial Attached SCSI, 40G Ethernet, 20G/40G Infiniband, and other communications standards. The 40G QSFP+ modules are favorable for high density 40G optical network. These modules are designed to operate over single-mode or multimode fiber systems with differently optimized lasers under different standards. 40G QSFP+ transceiver interface can be either duplex LC or 12-fiber MTP/MPO as shown in the following picture. The 40G QSFP+ transceiver module with MTP/MPO interface is a hot-swappable, parallel fiber-optical module with 4 independent 10 gigabit per second data lanes in each direction to provide 40Gbps aggregate bandwidth. 40G QSFP+ modules offer customers a wide variety of high-density 40 gigabit Ethernet connectivity options for data center, high-performance computing networks, enterprise core and distribution layers, and service provider transport applications.
 
Application of Different 40G QSFP+ Transceivers
The transceiver is used primarily in short reach applications in switches, routers, and data center equipment where it provides higher density than SFP+ modules. With the evolving of the format specification, now in the market, you can find a wide varieties of 40G QSFP+ transceivers including the short distance types, Bidi, and long distance types, of which 40GBASE-SR4 (QSFP-40G-SR4), 40GBASE-LR4 (QSFP-40G-LR4) and 40GBASE-ER4 (QSFP-40G-ER4) are the most commonly used physical layers for 40G QSFP+ modules.
 
QSFP-40G-SR4 (short range) transceiver has a port type for multimode fiber and uses 850nm lasers. It supports link lengths of 100 m and 150 m respectively on laser-optimized OM3 and OM4 multimode fiber cables. It is commonly used in data centers to interconnect two Ethernet switches with 12 lane ribbon OM3/OM4 cables. Primarily it enables high-bandwidth 40G optical links over ribbon fiber cables terminated with multi-fiber connectors (MTP/MPO), and could also be used along with ribbon to duplex fiber breakout cables for connectivity to four 10GBASE-SR optical interfaces.
 
QSFP-40G-LR4 (long range)or QSFP-40G-ER4 (extended range) transceiver has a port type for single-mode fiber and uses 1300nm region lasers. It uses two strands of fiber and combines four wavelengths by CWDM technology, delivering serialized data at a rate of 10Gbit/s per wavelength. Thus the optical interface can be simplified to standard LC connectors. QSFP-40G-LR4 transceiver is most commonly deployed between data canters or for IXP (Internet exchange point) site.
 
Conclusion
The QSFP+ transceiver is a great solution for multi-lane data communication and interconnect applications. fiber-mart.COM offers the best 40G QSFP+ modules. All these 40G QSFP+ modules are Cisco, Juniper, IBM and HP compatible. In addition to 40Gbps Ethernet interconnects, it can be used in datacom/telecom switch, and router connections, as well as data aggregation and backplane applications. Also you can have a wide selection of other transceivers and direct attached cables at fiber-mart.COM, including XFP transceivers, SFP transceivers, CFP modules, copper DAC, active optical cable and so on.

Tuesday, 16 January 2018

Optical Power Meter – an Essential Tester for Fiber Optic Testing

by Fiber-MART.COM
In fiber optic network, whether installing new cable, or troubleshooting existing cable, cable testing always plays an important role in the process. Optical power meter which is widely used for power measurement and loss testing is well known to us. Today, we are going to talk about this familiar and essential fiber optic tester—optical power meter, in details.
 
As its name suggests, optical power meter is a meter which is used for testing optical power. So, what is optical power? And how to measure power by using optical power meter?
 
Optical Power
In simple terms, optical power is the brightness or “intensity” of light. In optical networking, optical power is measured in “dBm” which refers to a decibel relative to 1 milliwatt (mW) of power. Thus a source with a power level of 0 dBm has a power of 1 mW. Likewise, 3 dBm is 2 mW and -3 dBm is 0.5 mW, etc. And one more thing should be known is that 0 mW is negative infinity dBm.
 
Using Optical Power Meter for Power Measurement
 
Measuring power at the transmitter or receiver requires only an optical power meter, an adapter for the fiber optic connector on the cables used, and the ability to turn on the network electronics.
 
The optical power meter must be set to the proper range (usually dBm, but sometimes mW) and the proper wavelength when measuring power. When all are ready, attach the optical power meter to the cable at the receiver to measure receiver power, or to a short test cable that is attached to the system source to measure transmitter power. Mark the value, and compare it to the specified power for the system and make sure it is in the acceptable range for the system.
 
In addition to measuring optical power, optical power meter can be used to test optical lost by using together with light source. What is optical loss and how does the optical power meter achieve loss testing?
 
Optical Loss
When light travels through fiber, some energy is lost, e.g., absorbed by the glass particles and converted to heat; or scattered by microscopic imperfections in the fiber. We call this loss of intensity “attenuation”. Attenuation is measured in dB loss per length of cable. dB is a ratio of two powers. Even the best connectors and splices aren’t perfect. Thus, every time we connect two fibers together, we get loss. We called this loss as insertion loss which is the attenuation caused by the insertion of the device such as a splice or connection point to a cable. Actual loss depends on your fiber connector and mating conditions. Additionally, insertion loss is also used to describe loss from Mux since it is the “penalty you pay just for inserting the fiber”.
 
Using Optical Power Meter and Light Source for Loss Testing
 
Loss of a cable is the difference between the power coupled into the cable at the transmitter end and what comes out at the receiver end. But Loss testing requires not only optical power meter, but also a light source. In general, multimode fiber is tested at 850 nm and optionally at 1300 nm with LED sources. Single-mode fiber is tested at 1310 nm and optionally at 1550 nm with laser sources. The measured loss is compared to the loss budget, namely estimated loss calculated for the link. In addition, in order to measure loss, it is necessary to create reproducible test conditions for testing fibers and connectors that simulate actual operating conditions. This simulation is created by choosing an appropriate source and mating a launch reference cable with a calibrated launch power that becomes the “0 dB” loss reference to the source.
 
There are two methods used to measure loss which are called “single-ended loss” and “double-ended loss”. Single-ended loss works by using only the launch cable while the double-ended loss works using a received cable attached to the meter also. The method “signle-ended loss” is described in FOTP-171. By using this method, you can test the loss of the connector mated to the launch cable and the loss of any fiber, splices or other connectors in the cable you are testing. Thus, it is the best possible method of testing patchcords, since it tests each connector individually. The method “double-ended loss” is specified in Ofiber-martTP-14. In this way, you can measure loss of two connectors and the loss of all the cable or cables, including connectors and splices in between. The following picture shows these two methods to us. From left to right: Single-ended loss testing (Patch Cord), Double-ended loss testing (installed cable plants).
 
Optical Power Meter Selection Guide
As described above, optical power meter is very useful and necessary for fiber optic testing such as optical power measurement and loss testing. Thus, to select a suitable optical power meter is very important. According to the user’s specific application, several points should be considered when choosing an optical power meter:
 
Choosing optical power meter with the best type of detector and interface
Evaluation of calibration and precision as well as the manufacturing calibration procedures should match your fiber and connector requirement
Make sure that the model of the meter is consistent with your measurement range and the display resolution
Whether have a direct insertion loss (dB) measurement function
In addition to optical power meter and light source, other tools such as launch cable, mating adapters, visual fault locator or fiber tracer, cleaning and inspection kits as well as other testers are also required for fiber optic testing. Fiberstore offers a comprehensive solution of fiber optic testers and tools which help you achieve a reliable and valuable fiber optic system. Contact us via sales@fiber-mart.com for more information.

How to Understand PoE and PoE+ Switches

by www.fiber-mart.com Power-over-Ethernet (PoE) is the technology that allows network switches to transmit power and data through an Ethe...