Showing posts with label Fiber Optic Identifier. Show all posts
Showing posts with label Fiber Optic Identifier. Show all posts

Thursday, 22 August 2019

Maintaining Fiber Network With Fiber Optic Identifier

During fiber optic network installation, maintenance or restoration, it is also often necessary to identify a specific fiber without disrupting live service. This battery powered instrument looks like a long handheld bar is called fiber optic identifier or live fiber identifier.
 
Optical fiber identifier employs safe and reliable macro bending technology to avoid disruption of network communications that would normally be caused by disconnecting or cutting a fiber optic cable for identification and testing. The fiber optic identifier is intended for engineers and technicians to identify dark or live fiber and excessive losses due to the misalignment of mechanical splices or poor connections.
 
There is a slot on the top of fiber identifier. The fiber under test is inserted into the slot, then the fiber identifier performs a macro-bend on the fiber. The macro-bend makes some light leak out from the fiber and the optical sensor detects it. The detector can detect both the presence of light and the direction of light.
 
A fiber optic identifier can detect “no signal”, “tone” or “traffic” and it also indicates the traffic direction. The optical signal loss induced by this technique is so small, usually at 1dB level, that it doesn’t cause any trouble on the live traffic. Fiber optic identifiers can detect 250um bare fibers, 900um tight buffered fibers, 2.0mm fiber cables, 3.0mm fiber cables, bare fiber ribbons and jacketed fiber ribbons.
 
Most fiber identifiers need to change a head adapter in order to support all these kinds of fibers and cables. While some other models are cleverly designed and they don’t need to change the head adapter at all. Some models only support single mode fibers and others can support both single mode and multimode fibers.
 
Difference Between Fiber Identifier and Visual Fault Locator
Fiber optical identifier and fiber optic visual fault locator all are most important tools for testing in our network. But sometimes we would mistake them. To be honest, they are different test tools.
 
1. Fiber Optical Identifier, it is a very sensitive photodetectors. When you will be a fiber bending, some light rays from the fiber core. The light will be detected by the fiber identification, technical staff according to these light can be a single fiber in the multi-core optical fiber or patch panel identified from the other fiber out. Optical Fiber Identifier can detect the status and direction of the light does not affect the transmission. In order to make this work easier, usually at the sending end to the test signal modulated into 270Hz, 1000Hz or 2000Hz and being injected into a specific fiber. Most of the optical fiber identifier for the operating wavelength of 1310nm or 1550nm single-mode fiber optical fiber, optical fiber identifier can use the macro folding technology to name the direction and power of the transmission fiber and the fiber under test online.
 
fiber optic identifier from Sunmafiber
 
2. VFL (Visual Fault Locator)
This revolutionary product is based on laser diode visible light (red light) source, when the light being injected into the fiber, if fiber fracture, connector failure, folding over, poor weld quality failure by launching the light of the fiber to fiber fault visual images positioning. Visual Fault Locator launched a continuing trend (CW) or pulsed mode. The common frequency of 1Hz or 2Hz, but can also work in the kHz range. Usually the output power of 0dBm (1mW) or less, the working distance of 2 to 5km, and to support all the common connector.
 
You can get fiber optic identifiers from Wilcom, Ideal, 3M, Sunmafiber and other network test equipment manufacturer. We recommend you Wilcom and Sunmafiber products since both manufacturers have very high customer satisfaction rate.

Thursday, 30 August 2018

FIBER OPTIC IDENTIFIER

by www.fiber-mart.com
Optical fiber identifier is an essential installation and maintenance instrument which can identify the optical fiber by detecting the optical signals transmitted through the cables, during this process the fiber optic identifier do no harm or damage to the fiber cable and it also do not need opening the fiber at the splice point for identification or interrupting the service.
 
During this process the fiber optic identifier generate no harm or damage to the fiber cable and it do not need opening the fiber at the splice point for identification or interrupting the service.This optical fiber identifier detects frequency tones at 270Hz, 1KHZ, 2KHZ, when traffic is present on the fiber under test, an audible tone can be heard. In the meantime, it can identify the traffic direction that indicated by LED with illumination.
 
The fiber optic identifier is intended for engineers and technicians to identify dark or live fiber and excessive losses due to the misalignment of mechanical splices or poor connections.
 
The relative energy studying might be utilized to support inside the identification of the reside optical fiber.There are numerous medical tests that might be done to isolate the preferred soluble fiber cable television from the party of fibers not having getting straight down the link(s). 3 procedures that could possibly be utilized consist of comparing relative power, inducing macrobends, and different the optical energy within the source. No solitary technique is most excellent or necessarily definitive. making use of a single or even a mixture of those procedures might be required to isolate the fiber.

Tuesday, 16 January 2018

Understanding OTDR Dead Zone Specifications

by Fiber-MART.COM
OTDR (Optical Time Domain Reflectometer), as one of the important fiber optic testers, is most commonly used by technicians or installers to certify the performance of new fiber optic links and detect the issues of existing fiber links. There are some specifications of an OTDR which may affect its performance. To understand these specifications can help users get maximum performance from their OTDRs. Today, one of the key specifications—Dead Zone will be introduced here.
 
Definition of Dead Zones
The OTDR dead zone refers to the distance (or time) where the OTDR cannot detect or precisely localize any event or artifact on the fiber link. It is always prominent at the very beginning of a trace or at any other high reflectance event.
 
Why Is There a Dead Zone?
In simple terms, OTDR dead zone is caused by a Fresnel reflection (mainly caused by air gap at OTDR connection) and the subsequent recovery time of the OTDR detector. When a strong reflection occurs, the power received by the photodiode can be more than 4,000 times higher than the backscattered power, which causes detector inside of OTDR to become saturated with reflected light. Thus, it needs time to recover from its saturated condition. During the recovering time, it can not detect the backscattered signal accurately which results in corresponding dead zone on OTDR trace. This is like when your eyes need to recover from looking at the bright sun or the flash of a camera. In general, the higher the reflectance, the longer the dead zone is. Additionally, dead zone is also influenced by the pulse width. A longer pulse width can increase the dynamic range which results in a longer dead zone.
 
Types of Dead Zones
In general, there are two types of dead zones on an OTDR trace—event dead zone (EDZ) and attenuation dead zone (ADZ).
 
Event Dead Zone
The event dead zone is the minimum distance between the beginning of one reflective event and the point where a consecutive reflective event can be detected. According to the Telcordia definition, event dead zone is the location where the falling edge of the first reflection is 1.5 dB down from the top of the first reflection.
 
Attenuation Dead Zone
The attenuation dead zone is the minimum distance after which a consecutive non-reflective event can be detected and measured. According to the Telcordia definition, it is the location where the signal is within 0.5 dB above or below the backscatter line that follows the first pulse. Thus, the attenuation dead zone specification is always larger than the event dead zone specification.
 
Note: In general, to avoid problems caused by the dead zone, a launch cable of sufficient length is always used when testing cables which allows the OTDR trace to settle down after the test pulse is sent into the fiber so that users can analyze the beginning of the cable they are testing.
 
There is always at least one dead zone in every fiber—where it is connected to the OTDR. The existence of dead zones is an important drawback for OTDR, specially in short-haul applications with a large number of fiber optic components. Thus, it is important to minimize the effects of dead zones wherever possible.
 
As mentioned above, dead zones can be reduced by using a lower pulse width, but it will decrease the dynamic range. Thus, it is important to select the right pulse width for the link under test when characterizing a network or a fiber. In general, short pulse width, short dead zone and low power are used for premises fiber testing and troubleshooting to test short links where events are closely spaced, while a long pulse width, long dead zone and high power are used for long-haul fiber testing and communication to reach further distances for longer networks or high-loss networks.
 
The shortest-possible event dead zone allows the OTDR to detect closely spaced events in the link. For instance, testing fibers in premises networks (particularly in data centers) requires an OTDR with short event dead zones since the patch cords of the fiber link are often very short. If the dead zones are too long, some connectors may be missed and will not be identified by the technicians, which makes it harder to locate a potential problem.
 
Short attenuation dead zones enable the OTDR not only to detect a consecutive event but also to return the loss of closely spaced events. For instance, the loss of a short patch cord within a network can now be known, which helps technicians to have a clear picture of what is actually inside the link.
 
Conclusion
OTDR is one of the most versatile and widely used fiber optic test equipment which offers users a quick, accurate way to measure insertion loss and shows the overview of the whole system you test. Dead zone, with two general types, is an important specification of OTDR. It is necessary for users to understand dead zone and select the right configuration in order to get maximum OTDR performance during test. In addition, OTDRs of different brands are designed with different minimum dead zone parameters since manufacturers use different testing conditions to measure the dead zones. Users should choose the suitable one according to the requirements and pay particular attention to the pulse width and the reflection value. Fiberstore offers various OTDRs of the major brands, such as JDSU, EXFO, YOKOGAWA etc., as well as other portable and handheld OTDRs with wide options. For more information, please contact us via sales@fiber-mart.com.

Wednesday, 13 December 2017

Maintaining Fiber Network With Fiber Optic Identifier

During fiber optic network installation, maintenance or restoration, it is also often necessary to identify a specific fiber without disrupting live service. This battery powered instrument looks like a long handheld bar is called fiber optic identifier or live fiber identifier.
 
Optical fiber identifier employs safe and reliable macro bending technology to avoid disruption of network communications that would normally be caused by disconnecting or cutting a fiber optic cable for identification and testing. The fiber optic identifier is intended for engineers and technicians to identify dark or live fiber and excessive losses due to the misalignment of mechanical splices or poor connections.
 
There is a slot on the top of fiber identifier. The fiber under test is inserted into the slot, then the fiber identifier performs a macro-bend on the fiber. The macro-bend makes some light leak out from the fiber and the optical sensor detects it. The detector can detect both the presence of light and the direction of light.
 
A fiber optic identifier can detect “no signal”, “tone” or “traffic” and it also indicates the traffic direction. The optical signal loss induced by this technique is so small, usually at 1dB level, that it doesn’t cause any trouble on the live traffic. Fiber optic identifiers can detect 250um bare fibers, 900um tight buffered fibers, 2.0mm fiber cables, 3.0mm fiber cables, bare fiber ribbons and jacketed fiber ribbons.
 
Most fiber identifiers need to change a head adapter in order to support all these kinds of fibers and cables. While some other models are cleverly designed and they don’t need to change the head adapter at all. Some models only support single mode fibers and others can support both single mode and multimode fibers.
 
Difference Between Fiber Identifier and Visual Fault Locator
Fiber optical identifier and fiber optic visual fault locator all are most important tools for testing in our network. But sometimes we would mistake them. To be honest, they are different test tools.
 
1. Fiber Optical Identifier, it is a very sensitive photodetectors. When you will be a fiber bending, some light rays from the fiber core. The light will be detected by the fiber identification, technical staff according to these light can be a single fiber in the multi-core optical fiber or patch panel identified from the other fiber out. Optical Fiber Identifier can detect the status and direction of the light does not affect the transmission. In order to make this work easier, usually at the sending end to the test signal modulated into 270Hz, 1000Hz or 2000Hz and being injected into a specific fiber. Most of the optical fiber identifier for the operating wavelength of 1310nm or 1550nm single-mode fiber optical fiber, optical fiber identifier can use the macro folding technology to name the direction and power of the transmission fiber and the fiber under test online.
 
fiber optic identifier from Sunmafiber
 
2. VFL (Visual Fault Locator)
This revolutionary product is based on laser diode visible light (red light) source, when the light being injected into the fiber, if fiber fracture, connector failure, folding over, poor weld quality failure by launching the light of the fiber to fiber fault visual images positioning. Visual Fault Locator launched a continuing trend (CW) or pulsed mode. The common frequency of 1Hz or 2Hz, but can also work in the kHz range. Usually the output power of 0dBm (1mW) or less, the working distance of 2 to 5km, and to support all the common connector.
 
You can get fiber optic identifiers from Wilcom, Ideal, 3M, Sunmafiber and other network test equipment manufacturer. We recommend you Wilcom and Sunmafiber products since both manufacturers have very high customer satisfaction rate.

How to Understand PoE and PoE+ Switches

by www.fiber-mart.com Power-over-Ethernet (PoE) is the technology that allows network switches to transmit power and data through an Ethe...