A new way to solve the “last mile problem” and provide real fiber connections to households was developed by scientists and researchers from the UCL Optical Networks Group and UNLOC program in London as they designed a simplified optical receiver that could be mass-produced cheaply.
Although current networks are mostly composed with optical fiber, they usually terminate in cabinets away from the user premises and that last mile that goes from the cabinet to the end user is mostly made with copper, which slows down connections, because it is really expensive to install in every home the optical receiver needed to read the optical signals.
“We have designed a simplified optical receiver that could be mass-produced cheaply while maintaining the quality of the optical signal. The average data transmission rates of copper cables connecting homes today are about 300 Mb/s and will soon become a major bottleneck in keeping up with data demands, which will likely reach about 5-10 Gb/s by 2025. Our technology can support speeds up to 10 Gb/s, making it truly futureproof”, said Dr Sezer Erkilinc, lead researcher from UCL Electronic & Electrical Engineering.
The design of the optical receiver developed by UCL researchers is simplified because it contains a quarter of the connectors that are usually used in a conventional receiver. It is able to improve sensitivity and network reach compared to current technology. When commercialized, the cost of installing and maintaining a real FTTH network will be dramatically reduced.
The laser stability of the receiver is currently being tested by the researchers, but Dr Erkilinc said once they it is quantified, they will be in a strong position to take the receiver design to trials and commercialize it.
No comments:
Post a Comment